Banking & Finance

Artificial intelligence in finance encompasses everything from chatbot assistants to fraud detection and task automation to algorithmic trading.

AI in Finance

Banking

In order to automate the daily routine and cut down the time needed to analyze the business correspondence, JPMorgan Chase has developed a proprietary ML algorithm called Contract Intelligence or COiN. It is now used to analyze the documentation and extract the important information from it. Applying this tool enabled the bank to process 12,000 credit agreements in several seconds, instead of 360,000 man-hours. The tool happened to be even more useful than initially expected, so the bank is actively exploring the ways to apply it in their daily operations.

The bank also invests heavily in the development of their proprietary virtual chat assistant, which is currently used in a pilot for 120,000 customers and will soon be rolled out for all 1,700,000 of the bank customers. This will help save billions in wages while providing top-notch customer support 247.

Citibank has their own startup accelerator, grouping multiple tech startups worldwide. Most of these companies develop products in the field of financial services and cybersecurity. One of their most notable moves was investing heavily in FeedzAI, the global enterprise that concentrates on using data science to identify and demolish fraudulent attempts in various avenues of financial activities, including online and mobile banking. FeedzAI uses machine learning algorithms to analyze huge volumes of Big Data real-time and alert the financial institutions of alleged fraud cases at once.

Lending

Risk modeling is a high priority for investment banks, as it helps to regulate financial activities and plays the most important role when pricing financial instruments. Investment banking evaluates the worth of companies to create capital in corporate financing, facilitate mergers and acquisitions, conduct corporate restructuring or reorganizations, and for investment purposes.

Trading

Roughly 90 percent of volume in the public equities markets is traded algorithmically

Roughly 50 percent of volume in the futures markets is traded Algorithmically

Case Studies

Technical Leadership
Slipstreamed technical leaders in the midst of a major software engineering transition.
Learn more
Talent Recruitment Automation
Use machine learning to improve recruiter productivity by 500%.
Read